

Shelby County Schools Science Vision

Shelby County Schools' vision of science education is to ensure that from early childhood to the end of the 12th grade, all students have heightened curiosity and an increased wonder of science; possess sufficient knowledge of science and engineering to engage in discussions; are able to learn and apply scientific and technological information in their everyday lives; and have the skills such as critical thinking, problem solving, and communication to enter careers of their choice, while having access to connections to science, engineering, and technology.

To achieve this, Shelby County Schools has employed The Tennessee Academic Standards for Science to craft a meaningful curriculum that is innovative and provide a myriad of learning opportunities that extend beyond mastery of basic scientific principles.

Introduction

In 2014, the Shelby County Schools Board of Education adopted a set of ambitious, yet attainable goals for school and student performance. The District is committed to these goals, as further described in our strategic plan, Destination 2025. In order to achieve these ambitious goals, we must collectively work to provide our students with high quality standards aligned instruction. The Tennessee Academic Standards for Science provide a common set of expectations for what students will know and be able to do at the end of each grade, can be located in the Tennessee Science Standards Reference. Tennessee Academic Standards for Science are rooted in the knowledge and skills that students need to succeed in post-secondary study or careers. While the academic standards establish desired learning outcomes, the curriculum provides instructional planning designed to help students reach these outcomes. The curriculum maps contain components to ensure that instruction focuses students toward college and career readiness. Educators will use this guide and the standards as a roadmap for curriculum and instruction. The sequence of learning is strategically positioned so that necessary foundational skills are spiraled in order to facilitate student mastery of the standards.

Our collective goal is to ensure our students graduate ready for college and career. Being College and Career Ready entails, many aspects of teaching and learning. We want our students to apply their scientific learning in the classroom and beyond. These valuable experiences include students being facilitators of their own learning through problem solving and thinking critically. The Science and Engineering Practices are valuable tools used by students to engage in understanding how scientific knowledge develops. These practices rest on important "processes and proficiencies" with longstanding importance in science education. The science maps contain components to ensure that instruction focuses students toward understanding how science and engineering can contribute to meeting many of the major challenges that confront society today. The maps are centered around five basic components: the Tennessee Academic Standards for Science, Science and Engineering Practices, Disciplinary Core Ideas, Crosscutting Concepts, and Phenomena.

The Tennessee Academic Standards for Science were developed using the National Research Council's 2012 publication, A Framework for K-12 Science Education as their

Items in this curriculum map are subject to revisions DRAFT 2019-2020

foundation. The framework presents a new model for science instruction that is a stark contrast to what has come to be the norm in science classrooms. Thinking about science had become memorizing concepts and solving mathematical formulae. Practicing science had become prescribed lab situations with predetermined outcomes. The framework proposes a three-dimensional approach to science education that capitalizes on a child's natural curiosity. The Science Framework for K-12 Science Education provides the blueprint for developing the effective science practices. The Framework expresses a vision in science education that requires students to operate at the nexus of three dimensions of learning: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. The Framework identified a small number of disciplinary core ideas that all students should learn with increasing depth and sophistication, from Kindergarten through grade twelve. Key to the vision expressed in the Framework is for students to learn these disciplinary core ideas in the context of science and engineering practices. The importance of combining Science and Engineering Practices, Crosscutting Concepts and Disciplinary Core Ideas is stated in the Framework as follows:

Standards and performance expectations that are aligned to the framework must take into account that students cannot fully understand scientific and engineering ideas without engaging in the practices of inquiry and the discourses by which such ideas are developed and refined. At the same time, they cannot learn or show competence in practices except in the context of specific content. (NRC Framework, 2012, p. 218)

To develop the skills and dispositions to use scientific and engineering practices needed to further their learning and to solve problems, students need to experience instruction in which they use multiple practices in developing a particular core idea and apply each practice in the context of multiple core ideas. We use the term "practices" instead of a term such as "skills" to emphasize that engaging in scientific investigation requires not only skill but also knowledge that is specific to each practice. Students in grades K-12 should engage in all eight practices over each grade band. Crosscutting concepts have application across all domains of science. As such, they are a way of linking the different domains of science. Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas. There are seven crosscutting concepts that bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering. Their purpose is to help students deepen their understanding of the disciplinary core ideas and develop a coherent and scientifically based view of the world.

The map is meant to support effective planning and instruction to rigorous standards. It is *not* meant to replace teacher planning, prescribe pacing or instructional practice. In fact, our goal is not to merely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. Teachers who are knowledgeable about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are best-positioned to make decisions about how to support student learning toward such mastery. Teachers are therefore expected—with the support of their colleagues, coaches, leaders, and other support providers—to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related best practices. However, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning are nonnegotiable. We must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support of literacy and language learning across the content areas.

Science and Engineering **Practices**

- 1. Asking questions & defining problems
- 2. Developing & using models
- 3. Planning & carrying out investigations
- 4. Analyzing & interpreting
- 5. Using mathematics & computational thinking
- 6. Constructing explanations & designing solutions
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, & communicating information

Disciplinary Core Ideas

Physical Science

PS 1: Matter & its interactions PS 2: Motion & stability: Forces & interactions

PS 3: Energy

PS 4: Waves & their applications in technologies for information transfer

Life Sciences

LS 1: From molecules to organisms: structures & processes

LS 2: Ecosystems: Interactions,

energy, & dynamics LS 3: Heredity: Inheritance &

variation of traits

LS 4: Biological evaluation: Unity &

Earth & Space Sciences

ESS 1: Earth's place in the universe ESS 2: Earth's systems

ESS 3: Earth & human activity

Engineering, Technology, & the Application of Science

ETS 1: Engineering design ETS 2: Links among engineering, technology, science, & society

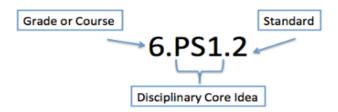
Crosscutting Concepts

- 1. Patterns
- 2. Cause & effect
- 3. Scale, proportion, & quantity
- 4. Systems & system models
- 5. Energy & matter
- 6. Structure & function
- 7. Stability & change

Learning Progression

At the end of the elementary science experience, students can observe and measure phenomena using appropriate tools. They are able to organize objects and ideas into broad concepts first by single properties and later by multiple properties. They can create and interpret graphs and models that explain phenomena. Students can keep notebooks to record sequential observations and identify simple patterns. They are able to design and conduct investigations, analyze results, and communicate the results to others. Students will carry their curiosity, interest and enjoyment of the scientific world view, scientific inquiry, and the scientific enterprise into middle school.

At the end of the middle school science experience, students can discover relationships by making observations and by the systematic gathering of data. They can identify relevant evidence and valid arguments. Their focus has shifted from the general to the specific and from the simple to the complex. They use scientific information to make wise decision related to conservation of the natural world. They recognize that there are both negative and positive implications to new technologies.


Items in this curriculum map are subject to revisions DRAFT 2019-2020

As an SCS graduate, former students should be literate in science, understand key science ideas, aware that science and technology are interdependent human enterprises with strengths and limitations, familiar with the natural world and recognizes both its diversity and unity, and able to apply scientific knowledge and ways of thinking for individual and social purposes.

Structure of the Standards

- Grade Level/Course Overview: An overview that describes that specific content and themes for each grade level or high school course.
- Disciplinary Core Idea: Scientific and foundational ideas that permeate all grades and connect common themes that bridge scientific disciplines.
- Standard: Statements of what students can do to demonstrate knowledge of the conceptual understanding. Each performance indicator includes a specific science and engineering practice paired with the content knowledge and skills that students should demonstrate to meet the grade level or high school course standards.

Purpose of Science Curriculum Maps

This map is a guide to help teachers and their support providers (e.g., coaches, leaders) on their path to effective, college and career ready (CCR) aligned instruction and our

pursuit of Destination 2025. It is a resource for organizing instruction around the Tennessee Academic Standards for Science, which defines what to teach and what students need to learn at each grade level. The map is designed to reinforce the grade/course-specific standards and content (scope) and provides suggested sequencing, pacing, time frames, and aligned resources. Our hope is that by curating and organizing a variety of standards-aligned resources, teachers will be able to spend less time wondering what to teach and searching for guality materials (though they may both select from and/or supplement those included here) and have more time to plan, teach, assess, and reflect with colleagues to continuously improve practice and best meet the needs of their students.

Items in this curriculum map are subject to revisions DRAFT 2019-2020

The map is meant to support effective planning and instruction to rigorous standards. It is *not* meant to replace teacher planning, prescribe pacing or instructional practice. In fact, our goal is not to merely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. Teachers who are knowledgeable about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are best-positioned to make decisions about how to support student learning toward such mastery. Teachers are therefore expected—with the support of their colleagues, coaches, leaders, and other support providers—to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related best practices. However, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning are nonnegotiable. We must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support of literacy and language learning across the content areas.

Environmental Science Quarter 1 Curriculum Map Curriculum Map Feedback Survey								
	Quarter 1			Quarter 2		Quarter 3	Quarter 4	
	Unit 1 Unit 2 Unit 3 Unit 4 Ecology Biodiversity Earth's Systems Earth and Human Activity I		/ I	Unit 5 Earth and Human Activity II	Unit 1 Ecology			
6 weel	ks	3 weeks	3 weeks	6 weeks		9 weeks	9 weeks	
			UNIT	1: Ecology [12 weeks]				
			O	verarching Question(s)				
	Hov	v and why do orga	nisms interact with the	eir environment and what are the	e effects	s of these interactions?		
Unit, Lesson	Lesson Length		Essential Que	stion		Vocabulary		
Unit 1 Ecology	12 days	What is a	ions n environmentally susta n ecosystem? natter and energy affect	•	Matter	Environmental Science, Ecology, Ecosystem, Sustainability, Matter, Energy, Model, First Law of Thermodynamics, Second Law of Thermodynamics, System, Trophic Level		
Standards and Background In			Instructional F	ocus	Instructional Resources			
Interactions, Energy, and Dynamics • Recogniz • Describe conceptu Standard EVSC.LS2.5 Use a mathematical • Identify to			e study of environment the different forms of trophic levels and how t al model.	hey can be represented in a laws of thermodynamics. system.	Explore Explain Elabora Evaluat	<u>2</u> 1 ate		

Items in this curriculum map are subject to revisions

Shelby County Schools 2019-2020

thermodynamics, construct an explanation for: A) necessity for constant energy input; B) limitations on energy transfer from one trophic level to the next; and, C) limitations on number of trophic levels that can be supported.

Explanation

The cycling of matter and the flow of energy within ecosystems occur through interactions among different organisms and between organisms and the physical environment. All living systems need matter and energy. Matter fuels the energy releasing chemical reactions that provide energy for life functions and provides the material for growth and repair of tissue. Energy from light is needed for plants because the chemical reaction that produces plant matter from air and water requires an energy input to occur. Animals acquire matter from food, that is, from plants or other animals. The chemical elements that make up the molecules of organisms pass through food webs and the environment and are

Phenomenon

Heat Transfer Through Convection

When heat transfers through convection, it generates currents. These currents can be seen throughout the earth and play a huge role in our everyday lives.

Watch the following short clip.

https://youtu.be/LHID7Cpq1lw

As the heat from the candles transfers to the air above it, the air gets warm and rises because it becomes less dense than the cool air around it. As the air rises, the farther it gets from the candle, it begins to cool off. As it cools, it falls back down because it becomes denser. This creates a continual current of air (wind) that hits the blades of the fan causing them to move. If the air did not cool off and fall back down, then it could be argued that the top of the fan would simply lift off. In this scenario heat transfer (Q) is being used to do work (W).

Lessons

Environmental Science: Sustaining Your World – Chapters 1. 2. & 3

Focus Sections - 2.3, 2.4, & 3.3

Environmental Science: Sustaining Your World, Page 81 – Question #4

Create a simplified model of a food chain in your region. Include the names of the organisms and their relationship to each other. Indicate the flow of energy, starting with the sun and including producers, consumers, and decomposers.

Environmental Science: Sustaining Your World – Stem Activities, Pages 41 and 63

Videos

Energy Flow in Ecosystems Demonstration - https://youtu.be/OQj38SxRAhc

Energy Flow in Ecosystems - https://youtu.be/InAKICtJIA4

Energy Flow in Ecosystem - https://youtu.be/5jBV9vJmXZI

Popcorn Energy Flow Lab

https://nabt.org/files/galleries/Anna Scott.pdf

Root Beer Activity

www.engr.sjsu.edu/tanagnos/Ecology/Root Beer Activity.doc

Environmental Impact Project

https://www.ngsslifescience.com/science.php?/biology/lessonplans/C417/

Items in this curriculum map are subject to revisions

Shelby County Schools

DRAFT

2019-2020

combined and recombined in different ways.

Misconceptions

A common misconception about ecosystems is that energy flows through an ecosystem many times. Most of the energy in an ecosystem comes from the Sun. The ultimate fate of all energy in all ecosystems is to be lost as heat. Energy does not recycle. The second law of thermodynamics that deals with the fact that energy cannot be cycled through an ecosystem in the same way that matter is. Natural processes that involve energy transfer must have one direction, and all natural processes are irreversible.

Science and Engineering Practices

- 2. Developing and using models
- 5. Using mathematics and computational thinking
- 6. Constructing explanations and designing solutions

Cross-Cutting Concepts

4. Systems and System Models

Energy Flow in Ecosystems

http://hub.rockyview.ab.ca/pluginfile.php/1840/mod resource/content/1/Energy%20Flow%20in%20Ecosystems%20Tutorial.pdf

Lab:

Impulse and Momentum Change

Momentum Conservation

Additional Resources:

ACT & SAT

TN ACT Information & Resources

SAT Connections

SAT Practice from Khan Academy

5. Energy and matter	
Activities/Performance Tasks	
The Science Teacher's Activity- a-Day – Page 131	
The 10 Percent Rule of Energy Flow	

Environmental Science Quarter 1 Curriculum Map

Quarter 1			Quarter 2			Quarter 3	Quarter 4	
Unit 1 Ecology		Unit 2 Biodiversity	Unit 3 Earth's Systems			Unit 5 Earth and Human Activity II	Unit 1 Ecology	
6 wee	ks	3 weeks	3 weeks	6 weeks		9 weeks	9 weeks	
			UNIT 1	: Ecology [12 weeks]				
	Overarching Question(s)							
How and why do organisms interact with their environment and what are the effects of these interactions?								
Unit, Lesson	Lesson Length		Essential C	uestion		Vocabulary		
Unit 1 Ecology	12 days	WhatWhat	 Essential Questions What are the major ecosystem components? What happens to energy in an ecosystem? What happens to matter in an ecosystem? 			ners, Producers, Decompose Respiration, Chemosynthes bic Respiration, Nutrient Cyc Cycle, Nitrogen Cycle, Phosp	is, Aerobic Respiration, cle, Hydrologic Cycle,	
	Standards and Related Background Information		Instructional Focus		Instructional Resources		ources	
	<u>Learni</u>		mes		Curricular Resources			
<u>DCI</u>	1 				<u>Engage</u>			
EVSC.LS2: Ecosystems:	Interactions,			cycle and energy flows through	El.			
Energy, and Dynamics		ecosys	ystems.			<u>Explore</u>		

Standards

EVSC.LS2.4 Compare and contrast production (photosynthesis, chemosynthesis) and respiratory (aerobic respiration, anaerobic respiration, consumption, decomposition) processes responsible for the cycling of matter and flow of energy through an ecosystem. Using evidence, construct an argument regarding the importance of homeostasis in maintaining these processes in ecosystems.

EVSC.LS2.6 Evaluate the interdependence among major biogeochemical cycles (water, carbon, nitrogen, phosphorus) in an ecosystem and recognize the importance each cycle has in maintaining ecosystem stability.

Explanation

The carbon cycle provides an example of matter cycling and energy flow in ecosystems. Photosynthesis, digestion of plant matter, respiration, and decomposition are important components of the carbon cycle, in which carbon is exchanged between the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. The atoms that make up the organisms in an ecosystem are cycled repeatedly

- Explain the roles of producers, consumers, and decomposers in an ecosystem.
- Identify the different ways in which energy and matter are transformed in an ecosystem.
- Summarize the processes of photosynthesis and cellular respiration.
- Describe the hydrological cycle.
- Describe the nutrient cycles within and among ecosystems and the biosphere.
- Explain how human activities impact nutrient cycles in ecosystems

Phenomenon

Photosynthesis

Watch the following YouTube clip.

https://voutu.be/OuVHrMBHDRM

Two candles are lit on a lab bench. Both are covered at the same time, one with just the candle and another with the candle and a plant inside (make sure the plant is well watered and has been exposed to sunlight). Students are to make a prediction about which candle will go out first, and then make observations throughout the demo. Afterwards, students will share their observations and then come up with questions they had about the results. This can be used before starting a photosynthesis unit to help explain why the plant helped the flame stay lit longer.

Explain

Elaborate

Evaluate

Lessons

Environmental Science: Sustaining Your World – Chapter 3 Focus Sections - 3.2 & 3.4

Environmental Science: Sustaining Your World, Page 78 -**Ouestion #3**

How would you revise Figure 3-7 to account for tertiary consumers, photosynthesis, aerobic respiration, and anaerobic respiration?

Environmental Science: Sustaining Your World, Page 90 -Questions #3, 4 & 5

Environmental Science: Sustaining Your World – Stem Activity, Page 97

Videos

Energy Notes Photosynthesis, Chemosynthesis and Cellular Respiration http://slideplayer.com/slide/224624/

Chemosynthesis vs Photosynthesis - Difference Between **Chemosynthesis and Photosynthesis**

https://voutu.be/9Sk9aE4lzXg

Ecosystem Processes

https://www.youtube.com/playlist?list=PLf6sf0FL4ayiNW6C SozXsuMo4Zlvn6aqd

Shelby County Schools Items in this curriculum map are subject to revisions DRAFT

2019-2020

between the living and nonliving parts of the ecosystem. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil and are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved; some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. Competition among species is ultimately competition for the matter and energy needed for life.

Misconceptions

Many students believe that only animals carry out cellular respiration and plants only carry out photosynthesis; they do not understand that plants also need to carry out cellular respiration to provide ATP for cellular processes.

Science and Engineering Practices

- 2. Developing and using models
- 7. Engage in argument from evidence

Cross-Cutting Concepts

- 2. Cause and Effect
- 4. Systems and system models
- 5. Energy and Matter

Biogeochemical Cycles

https://youtu.be/Bn41lXKyVWQ

The Water Cycle

https://pmm.nasa.gov/education/videos/earths-water-cycle

Carbon cycle | Ecology | Khan Academy

https://youtu.be/ dYkByQ9Kmg

Nitrogen Cycle | It's AumSum Time

https://youtu.be/HOpRT8BRGtk

The Phosphorus Cycle

 $\frac{https://www.sciencelearn.org.nz/resources/961-the-phosphorus-cycle}{}$

Activities/Performance Tasks

Candy Chemosynthesis

https://oceanexplorer.noaa.gov/explorations/02fire/backgr ound/education/media/ring candy chemo 9 12.pdf

Photosynthesis and Cellular Respiration Activity

https://www.umes.edu/uploadedFiles/_WEBSITES/HSUnits/Content/Day%2012%20-

 $\frac{\%20 Photosynthesis\%20 and\%20 Cellular\%20 Respiraiton\%20 A}{ctivity\%20 Guide\%20 PART\%201.doc}$

The Biogeochemical Cycle

https://www.st.nmfs.noaa.gov/Assets/Nemo/documents/lessons/Lesson 4/Lesson 4-Teacher's Guide.pdf

Biogeochemical Cycles

https://www.gov.mb.ca/waterstewardship/fisheries_education_sustain_dev/education/outcomePages/grade10/pdf/cycle.pdf

The Carbon Cycle Game
https://climatechangelive.org/img/fck/file/carbon_cycle_ga
<u>me.pdf</u>
Additional Resources:
ACT & SAT
TN ACT Information & Resources
<u>SAT Connections</u>
SAT Practice from Khan Academy

Quarter 1				Quarter 2	Quarter 3	Quarter 4	
Unit 1 Ecology		Unit 2 Biodiversity	Unit 3 Earth's Systems	Unit 4 Earth and Human Activity I	Unit 5 Earth and Human Activity II	Unit 1 Ecology	
6 wee	6 weeks 3 w		3 weeks	6 weeks	9 weeks	9 weeks	
			UNIT 1: I	Biodiversity [12 weeks]			
			Ove	rarching Question(s)			
	How and w	vhy do organism	ns interact with their	environment and what are the effect	cts of these interactions?		
Unit, Lesson	Lesson Length		Essential C	Question	Vocabulary		
Unit 1 Biodiversity	12 days	What I How d	estions is biodiversity and wh roles do species plan loes life on Earth char factors affect biodive	ny is it important? Evo in ecosystems? Ada nge over time? Ext	diversity, Biome, Ecological Nich plution, Natural Selection, Genet aptation, Speciation, Biological E inction, Endemic Species, Artific gineering	ic Variability, Mutation, xtinction, Mass	

Environmental Science Quarter 1 Curriculum Map

Standards and Related Background	Instructional Focus	Instructional Resources
Information	IIISLI UCLIOIIdi FOCUS	ilistructional nesources
	Learning Outcomes	Curricular Resources
DCI		Engage
EVSC.LS4: Biological Change: Unity and	Describe the four components of biodiversity.	
Diversity	 Explain how biodiversity leads to more resilient ecosystems. 	<u>Explore</u>
	Explain the scientific theory of biological evolution.	
<u>Standards</u>	Describe genetic variability and natural selection as	<u>Explain</u>
	mechanisms for evolution.	
EVSC.LS4.1 Construct an explanation	Understand that natural selection has limits.	<u>Elaborate</u>
based on scientific evidence for	Explain how speciation and extinction determine Earth's	
mechanisms of natural selection that	biodiversity.	<u>Evaluate</u>
result in behavioral, anatomical, and	Understand how artificial selection and genetic engineering	
physiological adaptations in populations.	allow humans to select species' traits.	Lessons
EVSC.LS4.2 Justify claims with scientific	Phenomenon	Environmental Science: Sustaining Your World – Chapter 4
evidence that changes in environmental		Focus Sections – 4.3 & 4.4
conditions lead to speciation and	Human Skin Color Varies by Latitude	
extinction.	,	Environmental Science: Sustaining Your World, Page 119 –
	Human skin color variation across the globe is a product of evolution	Questions 4 & 5
	in response to differing environments. In the mid-latitudes, darker	
<u>Explanation</u>	pigmentation is explained by the advantage conferred in preserving	Environmental Science: Sustaining Your World, Page 123 –
Genetic variation in a species results in	levels of folate in the body (which can be lowered by an hour of	Section 4.4 Assessment
individuals with a range of traits. In any	intense exposure to sunlight in individuals with lighter skin). Lower	
particular environment individuals with	folate levels are linked to birth defects where infants are born	Environmental Science: Sustaining Your World – Stem
particular traits may be more likely than	without a brain or spinal cord. Additionally, folate is crucial to sperm	Activity, Page 127
others to survive and produce offspring.	development. Conversely, individuals in the higher and lower	
This process is called natural selection	latitudes who are exposed to less ultraviolet radiation have lighter	
and may lead to the predominance of	skin. This allows individuals to absorb a higher amount of UV	<u>Videos</u>
certain inherited traits in a population	radiation in order to stimulate production of Vitamin D. This allows	
and the suppression of others. Natural	the body to absorb calcium and deposit it in the bones which is	Natural Selection - Crash Course Biology #14 -
selection occurs only if there is variation	especially important in fast-growing embryos.	https://youtu.be/aTftyFboC M
in the genetic information within a		Once in the second Branchetian Advantation on 12 111
population that is expressed in traits that	Related Resources:	Organisms and Populations - Adaptations and Population
lead to differences in survival and	http://sciencecases.lib.buffalo.edu/cs/files/skin_pigmentation.pdf	Attributes
reproductive ability among individuals		https://youtu.be/dNZErD9UrxM

Items in this curriculum map are subject to revisions

Shelby County Schools 2019-2020

DRAFT

under specific environmental conditions. If the trait differences do not affect reproductive success, then natural selection will not favor one trait over others.

http://ed.ted.com/lessons/the-science-of-skin-color-angela-koine-flynn

Facts of Evolution: Speciation and Extinction

https://youtu.be/T5kumHLiK4A

Misconceptions

Because natural selection can produce amazing adaptations, it's tempting to think of it as an all-powerful force, urging organisms on, constantly pushing them in the direction of progress — but this is not what natural selection is like at all. First, natural selection is not all-powerful: it does not produce perfection. If your genes are "good enough," you'll get some offspring into the next generation — you don't have to be perfect. This should be pretty clear just by looking at the populations around us: people may have genes for genetic diseases, plants may not have the genes to survive a drought, a predator may not be quite fast enough to catch her prey every time she is hungry. No population or organism is perfectly adapted. Second, it's more accurate to think of natural selection as a process rather than as a guiding hand. Natural selection is the simple result of variation, differential reproduction, and heredity — it is mindless and mechanistic. It has no goals; it's not striving to produce "progress" or a balanced ecosystem.

Activities/Performance Tasks

Mechanisms of Evolution

https://www.amnh.org/content/download/60958/101781 0/file/SRMP_Evolution.pdf

Scavenger Hunt: Simulating Natural Selection https://pumas.nasa.gov/files/09 17 03 1.pdf

Activity: Simulate Natural Selection

https://manoa.hawaii.edu/exploringourfluidearth/?q=biological/what-alive/evolution-natural-selection/activity-simulate-natural-selection

Speciation Lab

http://www.kentschools.net/hmcclure/files/2016/02/Lab-Skittlefish-Natural-Selection-.pdf

Additional Resources:

ACT & SAT

TN ACT Information & Resources

SAT Connections

SAT Practice from Khan Academy

Science and Engineering Practices

6. Constructing explanations and designing solutions7. Engaging in argument from evidence	
Cross-Cutting Concepts	
2. Cause and Effect	

Environmental Science Quarter 1 Curriculum Map

Quarter 1			Quarter 2		Quarter 3	Quarter 4		
Unit 1 Ecology		Unit 2 Biodiversity	Unit 3 Earth's Systems	Unit 4 Earth and Human Activity I	Unit 5 Earth and Human Activity II	Unit 1 Ecology		
6 wee	ks	3 weeks	3 weeks	6 weeks	9 weeks	9 weeks		
			UNIT 1: I	Biodiversity [12 weeks]				
	Overarching Question(s)							
	How and v	vhy do organism	ns interact with their	environment and what are the et	fects of these interactions?			
Unit, Lesson	Lesson Length		Essential Q	uestion	Vocabulary	Vocabulary		
Unit 2 Biodiversity	12 days	● How d	o species interact?	d to changing conditions?	Interspecific Competition, Resource Predator, Prey, Coevolution, Parasit Commensalism, Ecological Succession Population, Limiting Factor, Environ Carrying Capacity	tism, Mutualism, on, Inertia, Resilience,		
Standards and Related Background Information		Instructional Focus			Instructional Resources			
<u>DCI</u> EVSC.LS2: Ecosystems: Interactions, Energy, and Dynamics		Learning Outco	<u>comes</u>		Curricular Resources Engage			

Standard

EVSC.LS2.7 Examine stability and change within an ecosystem by using a model of succession (primary or secondary) to predict impacts of disruption on an ecosystem.

EVSC.LS2.3 Using mathematical models, support arguments regarding the effects of biotic and abiotic factors on carrying capacity for populations within an ecosystem.

Explanation

Ecosystems are sustained by the continuous flow of energy, originating primarily from the sun, and the recycling of matter and nutrients within the system, and are dynamic in nature. Their characteristics fluctuate over time, depending on changes in the environment and in the populations of various species. Interactions between organisms may be predatory, competitive, or mutually beneficial. Ecosystems have carrying capacities that limit the number of organisms (within populations) they can support. Individual survival and population sizes depend on such factors as predation, disease, availability of resources, and parameters of the physical environment.

Misconceptions

Students may give human characteristics to, or anthropomorphize, plants and

- Explain how species compete with one another for certain resources.
- Recognize feeding relationships as a major category of interaction among species.
- Understand how interactions between predator and prey species can drive each other's evolution.
- Differentiate between parasitism, mutualism, and commensalism.
- Understand how the species composition of a community or ecosystem can change.
- Recognize that living systems are sustained through constant change.
- Identify the variables that govern changes in population size and the factors that limit population size.
- Explain reproductive and survivorship patterns of populations.

Phenomenon

Marine Fish Populations Are Declining

View the following picture.

https://mrmeyergeography.files.wordpress.com/2014/02/sustainability-fishing.jpg

The phenomenon is a comical replica of a fishing vessel trawling a massive net across the sea floor. In this process the net has consumed an entire school of fish, while also destroying the benthic habitat. Two fish are left behind demonstrating the dramatic decrease in population size that occurs instantaneously. This phenomena highlights human impact on marine fisheries. Overfishing in the ocean leads to population decline, which depletes the ecosystem of vital resources for other ocean predators. Conversely, this leads to the overabundance of the reduced population's prey species. Overfishing also decimates habitats, which also reduces population sizes of other marine species. The

Explore

Explain

Elaborate

Evaluate

Lessons

Environmental Science: Sustaining Your World – Chapter 5

Environmental Science: Sustaining Your World, Page 137 – Question 5

Draw a diagram to describe the coevolution between bats and moths.

Environmental Science: Sustaining Your World, Page 140 – Question 5

Describe how a rain forest can reach a point when it cannot be restored by secondary ecological succession.

Environmental Science: Sustaining Your World, Page 147 – Question 6

Describe the types of data needed to provide causal evidence of space as a limiting factor on the size of a fish population.

Environmental Science: Sustaining Your World – Stem Activity, Page 151

Videos

Ecosystem Disturbances vs. Stability

https://youtu.be/KvomuF04Q9A

Items in this curriculum map are subject to revisions

Shelby County Schools

DRAFT

2019-2020

animals. They may struggle with ideas like predation, believe that only certain animals get eaten, or think that all organisms within an ecosystem "get along." They may assume certain characteristics about groups of organisms such as carnivores based on a few examples or they may simplify the complex set of relationships represented by a food web. Finally, students may not understand that ecosystems are dynamic and change as a result of natural and human-influenced processes.

Another topic prone to misconception is adaptation. Students (and adults) often misinterpret or misuse this word to indicate that individual organisms intentionally change in response to changes in their environment. Many children's books and web sites present some variation of this misleading notion in an attempt to simplify the concept or the reading level of material. As a result, adaptation is an extremely misunderstood scientific concept.

Science and Engineering Practices

- 2. Developing and using models
- 5. Using mathematics and computational thinking
- 7. Engaging in argument from evidence

Cross-Cutting Concepts

2. Cause and effect

corresponding resources simulate these conditions and highlight the shifts in carrying capacity that occur as a result of these disruptions.

Related Resources:

http://earthwatch.org/portals/0/downloads/education/lessonplans/go fish.pdf

http://sepuplhs.org/high/sgi/teachers/fishery_sim.html

https://www.youtube.com/watch?v=eVJ7Prt5OdA

Ecosystem Stability

http://slideplayer.com/slide/6870135/

Ecological Succession: Change is Good

https://youtu.be/jZKIHe2LDP8

Ecological Carrying Capacity

https://youtu.be/XV2-2Ym3IIc

Limiting Factors in an Ecosystem

https://youtu.be/pPw51fDTl68

Limiting Factors and Carrying Capacity

https://youtu.be/uK_jvGXy9HY

Activities/Performance Tasks

Ecological Succession Activity

http://hereausclasses.weebly.com/uploads/1/3/0/9/130996 00/ecological succession reading and activity.doc

The Ups and Downs of Populations

http://science4inguiry.com/LessonPlans/LifeScience/Popula tions MS/UpsDownsPopulationsMSFinal.pdf

Population and Limiting Factor Lab

http://blogs.fcps.net/mrswoods/files/2015/08/Population-Limiting-Factors-Owl-Mouse-LAB.pdf

Additional Resources:

ACT & SAT

TN ACT Information & Resources

SAT Connections

SAT Practice from Khan Academy

2019-2020

4. Systems and System Models	
5. Energy and matter	
6. Structure and Function	
7. Stability and Change	

			Environmental Sci	ence Quarter 1 Curriculum Map			
Quarter 1			Quarter 2			Quarter 3	Quarter 4
Unit 1 Unit 2 Ecology Biodiversity		Unit 3 Earth's Systems	Unit 4 Earth and Human Activity		Unit 5 h and Human Activity II	Unit 1 Ecology	
6 wee	ks	3 weeks	3 weeks	6 weeks		9 weeks	9 weeks
			UNIT 1:	Biodiversity [12 weeks]			
				rarching Question(s)			
		hy do organism		environment and what are the e	ffects of these	interactions?	
Unit, Lesson	Lesson Length		Essential C	uestion		Vocabulary	
Unit 2 Biodiversity	12 days	Why iWhat biodiv	 Essential Questions Why is biodiversity important? What positive and negative effects do people have on biodiversity? What can be done to protect biodiversity? 			Coevolution, Parasit	on, Inertia, Resilience,
Standards and Rela Informa	~		Instruction	al Focus	Instructional Resources		
EVSC.LS2: Ecosystems: Interactions, Energy, and Dynamics Standard EVSC.LS2.7 Examine stability and change within an ecosystem by using a model of succession (primary or secondary) to • Explication in Explication i		resour Recog interac Under	n how species comperces. nize feeding relations ction among species.	te with one another for certain hips as a major category of hips between predator and prey	Curricular Resources Engage Explore Explain Elaborate		

Items in this curriculum map are subject to revisions

Shelby County Schools 2019-2020

EVSC.LS2.3 Using mathematical models, support arguments regarding the effects of biotic and abiotic factors on carrying capacity for populations within an ecosystem.

Explanation

Ecosystems are sustained by the continuous flow of energy, originating primarily from the sun, and the recycling of matter and nutrients within the system, and are dynamic in nature. Their characteristics fluctuate over time, depending on changes in the environment and in the populations of various species. Interactions between organisms may be predatory, competitive, or mutually beneficial. Ecosystems have carrying capacities that limit the number of organisms (within populations) they can support. Individual survival and population sizes depend on such factors as predation, disease, availability of resources, and parameters of the physical environment.

Misconceptions

Students may give human characteristics to, or anthropomorphize, plants and animals. They may struggle with ideas like predation, believe that only certain animals get eaten, or think that all organisms within an ecosystem "get along." They may assume certain characteristics about groups of

- Differentiate between parasitism, mutualism, and commensalism.
- Understand how the species composition of a community or ecosystem can change.
- Recognize that living systems are sustained through constant change.
- Identify the variables that govern changes in population size and the factors that limit population size.
- Explain reproductive and survivorship patterns of populations.

Phenomenon

Marine Fish Populations Are Declining

View the following picture.

https://mrmeyergeography.files.wordpress.com/2014/02/sustainabil itv-fishing.ipg

The phenomenon is a comical replica of a fishing vessel trawling a massive net across the sea floor. In this process the net has consumed an entire school of fish, while also destroying the benthic habitat. Two fish are left behind demonstrating the dramatic decrease in population size that occurs instantaneously. This phenomena highlights human impact on marine fisheries. Overfishing in the ocean leads to population decline, which depletes the ecosystem of vital resources for other ocean predators. Conversely, this leads to the overabundance of the reduced population's prey species. Overfishing also decimates habitats, which also reduces population sizes of other marine species. The corresponding resources simulate these conditions and highlight the shifts in carrying capacity that occur as a result of these disruptions.

Related Resources:

Evaluate

Lessons

Environmental Science: Sustaining Your World – Chapter 5

Environmental Science: Sustaining Your World, Page 137 -**Question 5**

Draw a diagram to describe the coevolution between bats and moths.

Environmental Science: Sustaining Your World, Page 140 -**Ouestion 5**

Describe how a rain forest can reach a point when it cannot be restored by secondary ecological succession.

Environmental Science: Sustaining Your World, Page 147 -**Ouestion 6**

Describe the types of data needed to provide causal evidence of space as a limiting factor on the size of a fish population.

Environmental Science: Sustaining Your World – Stem Activity, Page 151

Videos

Ecosystem Disturbances vs. Stability

https://youtu.be/KvomuF04Q9A

Ecosystem Stability

http://slideplayer.com/slide/6870135/

Ecological Succession: Change is Good

https://voutu.be/iZKIHe2LDP8

organisms such as carnivores based on a few examples or they may simplify the complex set of relationships represented by a food web. Finally, students may not understand that ecosystems are dynamic and change as a result of natural and human-influenced processes.

Another topic prone to misconception is adaptation. Students (and adults) often misinterpret or misuse this word to indicate that individual organisms intentionally change in response to changes in their environment. Many children's books and web sites present some variation of this misleading notion in an attempt to simplify the concept or the reading level of material. As a result, adaptation is an extremely misunderstood scientific concept.

Science and Engineering Practices

- 2. Developing and using models
- 5. Using mathematics and computational thinking
- 7. Engaging in argument from evidence

Cross-Cutting Concepts

- 2. Cause and effect
- 4. Systems and System Models
- 5. Energy and matter
- 6. Structure and Function
- 7. Stability and Change

http://earthwatch.org/portals/0/downloads/education/lesson-plans/go_fish.pdf

http://sepuplhs.org/high/sgi/teachers/fishery_sim.html

https://www.youtube.com/watch?v=eVJ7Prt5OdA

Ecological Carrying Capacity

https://youtu.be/XV2-2Ym3IIc

Limiting Factors in an Ecosystem

https://youtu.be/pPw51fDTl68

Limiting Factors and Carrying Capacity

https://youtu.be/uK_jvGXy9HY

Activities/Performance Tasks

Ecological Succession Activity

http://hereausclasses.weebly.com/uploads/1/3/0/9/130996 00/ecological succession reading and activity.doc

The Ups and Downs of Populations

http://science4inquiry.com/LessonPlans/LifeScience/Populations MS/UpsDownsPopulationsMSFinal.pdf

Population and Limiting Factor Lab

http://blogs.fcps.net/mrswoods/files/2015/08/Population-Limiting-Factors-Owl-Mouse-LAB.pdf

Additional Resources:

ACT & SAT

TN ACT Information & Resources

SAT Connections

SAT Practice from Khan Academy

Environmental Science Quarter 1 Curriculum Map

Quarter 1				Quarter 2	Quarter 3 Quarter 4		Quarter 4	
Unit 1 Ecology		Unit 2 Biodiversity	Unit 3 Unit 4 Earth's Systems Earth and Human Activity		1	Unit 5 Earth and Human Activity II	Unit 1 Ecology	
6 wee	ks	3 weeks	3 weeks	6 weeks		9 weeks	9 weeks	
			UNIT 1: E	Biodiversity [12 weeks]				
				rarching Question(s)				
		hy do organism		environment and what are the	effects			
Unit, Lesson	Lesson Length		Essential Q	uestion		Vocabulary		
Unit 2 Biodiversity	12 days	What fWhat aWhat a	What are the major types of terrestrial ecosystems?What are the major types of marine ecosystems?			Weather, Climate, Edge Effect, Permafrost, Aquatic Life Zone, Marine Life Zone, Coastal Zone, Estuary, Ocean Acidification, Surface Water, Freshwater Life Zone, Runoff, Watershed, Eutrophication, Delta, Inland Wetland		
Standards and Rela Informa			Instructional Focus			Instructional Resources		
DCI EVSC.LS2: Ecosystems: Interactions, Energy, and Dynamics Standard EVSC.LS2.1 Using a variety of data sources, construct an explanation for the impact of climate, latitude, altitude, geology, and hydrology patterns on plant and animal life in various terrestrial biomes. EVSC.LS2.2 Develop an explanation of behavioral and physical adaptations organisms have for life in aquatic		 Relate zones. Explair how th Describe elevati Identif Define import 	nderstand the difference between weather and climate. elate ocean currents and air circulation to Earth's climate ones. explain how greenhouse gases enter the atmosphere and ow these gases affect Earth and its atmosphere. escribe how climate and vegetation vary with latitude and levation. Elentify the types of deserts, grasslands, and forests. efine the ecological roles of mountains and their inportance in ecosystem services. escribe some ways in which humans alter terrestrial		Evaluate Lessons		Your World – Chapter 6	

Items in this curriculum map are subject to revisions

Shelby County Schools 2019-2020

habitats with varying chemical and physical features.

Explanation

Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. Because these patterns are so complex, weather can be predicted only probabilistically.

Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation as well as downhill flows on land. The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns.

Misconceptions

A **biome** is NOT an ecosystem, although in a way it can look like a massive ecosystem. If you take a closer look, you will notice that plants or animals in any of the biomes have special adaptations that make it possible for them to exist in that area. You may find many units of ecosystems within one biome.

- Define aquatic life zones and explain the difference between marine and freshwater life zones.
- Discuss the difference between the euphotic zone and the bathyal zone of the ocean.
- Explain the causes of ocean acidification.
- Understand that a river typically flows through three zones.
- Describe the seven ecosystem and economic services that inland wetlands provide.
- Describe human activities that are degrading freshwater systems.

Phenomenon

Earth's Changing Climate

View the following picture.

http://media.education.nationalgeographic.com/assets/photos/11 6/58c/11658cbf-0c13-413a-96a5-3a98ca978b20.jpg

Climate is the long-term pattern of weather in a particular area. Weather can change from hour to hour, day to day, month to month or even from year to year. For periods of 30 years or more, however, distinct weather patterns occur. A desert might experience a rainy week, but over the long term, the region receives very little rainfall. It has a dry climate. Because climates are mostly constant, living things can adapt to them. Polar bears have adapted to stay warm in polar climates, while cacti have evolved to hold onto water in dry climates. The enormous variety of life on Earth results in large part from the variety of climates that exist. Climates do change, however—they just change very slowly, over hundreds or even thousands of years. As climates change, organisms that live in the area must adapt, relocate, or risk going extinct.

Related Resources:

http://nationalgeographic.org/activity/earths-changing-climates/

Environmental Science: Sustaining Your World, Page 162 -**Question 6**

Environmental Science: Sustaining Your World, Page 175 -Questions 4 and 5

Environmental Science: Sustaining Your World, Page 181 -**Question 5**

Environmental Science: Sustaining Your World, Page 185 -Ouestions 5 and 6

Environmental Science: Sustaining Your World – Stem Activity, Page 189

Videos

National Geographic - Weather and Climate

https://video.nationalgeographic.com/video/climateweather-sci

Weather vs. Climate: What's the difference?

https://youtu.be/SosJzEn1G0s

Five Factors that Affect Climate

https://youtu.be/E7DLLxrrBV8

Factors that Affect Climate

https://youtu.be/rcVee8qVWZI

Terrestrial Ecosystems

https://youtu.be/LXF9VW5G0xU

Marine Ecosystems

https://voutu.be/se si0nL3Xk

2019-2020

Although the word "desert" is normally associated with sand, desertification does not necessarily mean the land is becoming sand-covered. Instead, desertification occurs when a dryland ecosystem, or ecosystem that lacks water, becomes unproductive due to the tolls of the environment or human beings.

http://nationalgeographic.org/encyclopedia/climate-change/

http://authoring.concord.org/sequences/47/activities/278?show in dex=true

The Basics of Freshwater

https://youtu.be/oaQCiwzjnCM

Activities/Performance Tasks

Weather Scope Activities

http://www.k12science.org/curriculum/weatherproj2/en/activities.shtml

Ecosystems & Energy in Ecosystems

http://www.esc3.net/cms/lib/TX00001506/Centricity/Doma in/14/NEISDEnviron.%20Systems%201st%20Nine%20Weeks %20Group%201.pdf

Crafting an Aquatic Ecosystem

 $\frac{\text{https://www.fws.gov/columbiariver/ANS/Activities/Activity}}{3.pdf}$

Additional Resources:

ACT & SAT

TN ACT Information & Resources

SAT Connections

SAT Practice from Khan Academy

Shelby County Schools 2019-2020

Curriculum and Instruction- Science

RESOURCE TOOLKIT

Quarter 1 **Environmental Science** Websites/Videos **Additional Resources Textbook Resources DCIs and Standards Energy Flow in Ecosystems Demonstration -ACT & SAT Environmental Science: Sustaining Your** DCI https://voutu.be/OQi38SxRAhc World - Chapter 3 **TN ACT Information & Resources** EVSC.LS2: Ecosystems: Interactions, Energy, and **Energy Flow in Ecosystems -**ACT College & Career Readiness Mathematics Standards Focus Sections - 3.2 & 3.4 Dynamic https://youtu.be/InAKICtJIA4 **SAT Connections** Standard SAT Practice from Khan Academy Energy Flow in Ecosystem https://youtu.be/5jBV9vJmXZI **Environmental Science: Sustaining Your** EVSC.LS2.5 Use a mathematical model to explain Khan Academy World, Page 78 - Question #3 energy flow through an ecosystem. Using the first Illuminations (NCTM) Popcorn Energy Flow Lab and second laws of thermodynamics, construct an How would you revise Figure 3-7 to **Discovery Education** https://nabt.org/files/galleries/Anna Scott.pdf explanation for: A) necessity for constant energy account for tertiary consumers, input; B) limitations on energy transfer from one The Futures Channel photosynthesis, aerobic respiration, and trophic level to the next; and, C) limitations on **Root Beer Activity** The Teaching Channel anaerobic respiration? www.engr.sjsu.edu/tanagnos/Ecology/Root Beer Activit number of trophic levels that can be supported. Teachertube.com y.doc **Environmental Science: Sustaining Your** EVSC.LS2.4 Compare and contrast production World, Page 90 - Questions #3, 4 & 5 (photosynthesis, chemosynthesis) and respiratory **Environmental Impact Project** (aerobic respiration, anaerobic respiration, https://www.ngsslifescience.com/science.php?/biology/l **Environmental Science: Sustaining Your** consumption, decomposition) processes responsible essonplans/C417/ World – Stem Activity, Page 97 for the cycling of matter and flow of energy through **Energy Flow in Ecosystems** an ecosystem. Using evidence, construct an http://hub.rockyview.ab.ca/pluginfile.php/1840/mod res **Environmental Science: Sustaining Your** argument regarding the importance of homeostasis ource/content/1/Energy%20Flow%20in%20Ecosystems% World - Chapters 1, 2. & 3 in maintaining these processes in ecosystems. 20Tutorial.pdf Lab: Focus Sections - 2.3, 2.4, & 3.3 Impulse and Momentum Change **Environmental Science: Sustaining Your Momentum Conservation** EVSC.LS2.6 Evaluate the interdependence among World, Page 81 - Question #4 **Energy Notes Photosynthesis, Chemosynthesis and** major biogeochemical cycles (water, carbon, **Cellular Respiration** nitrogen, phosphorus) in an ecosystem and recognize Create a simplified model of a food chain http://slideplayer.com/slide/224624/ the importance each cycle has in maintaining in your region. Include the names of the ecosystem stability. organisms and their relationship to each Chemosynthesis vs Photosynthesis - Difference Between other. Indicate the flow of energy, Chemosynthesis and Photosynthesis EVSC.LS4.1 Construct an explanation based on

Items in this curriculum map are subject to revisions

Shelby County Schools 2019-2020

scientific evidence for mechanisms of natural

starting with the sun and including producers, consumers, and decomposers.

selection that result in behavioral, anatomical, and physiological adaptations in populations.

https://youtu.be/9Sk9aE4lzXg

Environmental Science: Sustaining Your World – Stem Activities, Pages 41 and 63

Environmental Science: Sustaining Your World – Chapter 5

Environmental Science: Sustaining Your World, Page 137 – Question 5

Draw a diagram to describe the coevolution between bats and moths.

Environmental Science: Sustaining Your World, Page 140 – Question 5

Describe how a rain forest can reach a point when it cannot be restored by secondary ecological succession.

Environmental Science: Sustaining Your World, Page 147 – Question 6

Describe the types of data needed to provide causal evidence of space as a limiting factor on the size of a fish populations

Environmental Science: Sustaining Your World – Stem Activity, Page 151

Lessons

Environmental Science: Sustaining Your World – Chapter 5

Environmental Science: Sustaining Your World, Page 137 – Question 5

Draw a diagram to describe the coevolution between bats and moths.

Environmental Science: Sustaining Your World, Page 140 – Question 5

EVSC.LS4.2 Justify claims with scientific evidence that changes in environmental conditions lead to speciation and extinction.

EVSC.LS2.7 Examine stability and change within an ecosystem by using a model of succession (primary or secondary) to predict impacts of disruption on an ecosystem.

EVSC.LS2.3 Using mathematical models, support arguments regarding the effects of biotic and abiotic factors on carrying capacity for populations within an ecosystem.

EVSC.LS2.1 Using a variety of data sources, construct an explanation for the impact of climate, latitude, altitude, geology, and hydrology patterns on plant and animal life in various terrestrial biomes.

EVSC.LS2.2 Develop an explanation of behavioral and physical adaptations organisms have for life in aquatic habitats with varying chemical and physical features.

Ecosystem Processes

https://www.youtube.com/playlist?list=PLf6sf0FL4ayiNW 6CSozXsuMo4Zlvn6aad

Biogeochemical Cycles

https://youtu.be/Bn41lXKyVWQ

The Water Cycle

https://pmm.nasa.gov/education/videos/earths-water-cycle

Carbon cycle | Ecology | Khan Academy

https://youtu.be/ dYkByQ9Kmg

Nitrogen Cycle | It's AumSum Time

https://youtu.be/HOpRT8BRGtk

The Phosphorus Cycle

https://www.sciencelearn.org.nz/resources/961-the-phosphorus-cycle

Activities/Performance Tasks

Candy Chemosynthesis

https://oceanexplorer.noaa.gov/explorations/02fire/back ground/education/media/ring_candy_chemo_9_12.pdf

Photosynthesis and Cellular Respiration Activity

https://www.umes.edu/uploadedFiles/ WEBSITES/HSUnits/Content/Day%2012%20-%20Photosynthesis%20and%20Cellular%20Respiraiton%20Activity%20Guide%20PART%201.doc

The Biogeochemical Cycle

https://www.st.nmfs.noaa.gov/Assets/Nemo/documents/lessons/Lesson 4/Lesson 4-Teacher's Guide.pdf

Items in this curriculum map are subject to revisions

Shelby County Schools

DRAFT

2019-2020

Describe how a rain forest can reach a point when it cannot be restored by secondary ecological succession.

Environmental Science: Sustaining Your World, Page 147 - Question 6

Describe the types of data needed to provide causal evidence of space as a limiting factor on the size of a fish population.

Environmental Science: Sustaining Your World - Stem Activity, Page 151

Environmental Science: Sustaining Your World - Chapter 6

Environmental Science: Sustaining Your World, Page 162 – Question 6

Environmental Science: Sustaining Your World, Page 175 – Questions 4 and 5

Environmental Science: Sustaining Your World, Page 181 – Question 5

Environmental Science: Sustaining Your World, Page 185 - Questions 5 and 6

Environmental Science: Sustaining Your World - Stem Activity, Page 189

Biogeochemical Cycles

https://www.gov.mb.ca/waterstewardship/fisheries edu cation sustain dev/education/outcomePages/grade10/p df/cycle.pdf

The Carbon Cycle Game

https://climatechangelive.org/img/fck/file/carbon cycle game.pdf

Ecosystem Disturbances vs. Stability

https://youtu.be/KvomuF04Q9A

Ecosystem Stability

http://slideplayer.com/slide/6870135/

Ecological Succession: Change is Good

https://youtu.be/jZKIHe2LDP8

Ecological Carrying Capacity

https://youtu.be/XV2-2Ym3IIc

Limiting Factors in an Ecosystem

https://youtu.be/pPw51fDTl68

Limiting Factors and Carrying Capacity

https://youtu.be/uK_jvGXy9HY

Activities/Performance Tasks

Ecological Succession Activity

http://hereausclasses.weebly.com/uploads/1/3/0/9/130 99600/ecological succession reading and activity.doc

The Ups and Downs of Populations

http://science4inquiry.com/LessonPlans/LifeScience/Pop ulations MS/UpsDownsPopulationsMSFinal.pdf

Items in this curriculum map are subject to revisions DRAFT

Population and Limiting Factor Lab

http://blogs.fcps.net/mrswoods/files/2015/08/Population-Limiting-Factors-Owl-Mouse-LAB.pdf

http://earthwatch.org/portals/0/downloads/education/lesson-plans/go_fish.pdf

http://sepuplhs.org/high/sgi/teachers/fishery_sim.html

https://www.youtube.com/watch?v=eVJ7Prt5OdA

National Geographic - Weather and Climate

https://video.nationalgeographic.com/video/climateweather-sci

Weather vs. Climate: What's the difference?

https://youtu.be/SosJzEn1G0s

Five Factors that Affect Climate

https://youtu.be/E7DLLxrrBV8

Factors that Affect Climate

https://youtu.be/rcVee8qVWZI

Terrestrial Ecosystems

https://youtu.be/LXF9VW5G0xU

Marine Ecosystems

https://youtu.be/se_si0nL3Xk

The Basics of Freshwater

https://youtu.be/oaQCiwzjnCM

Activities/Performance Tasks

Weather Scope Activities

http://www.k12science.org/curriculum/weatherproj2/en/activities.shtml

Ecosystems & Energy in Ecosystems

	http://www.esc3.net/cms/lib/TX00001506/Centricity/Domain/14/NEISDEnviron.%20Systems%201st%20Nine%20Weeks%20Group%201.pdf	
	Crafting an Aquatic Ecosystem	
	https://www.fws.gov/columbiariver/ANS/Activities/Activity_3.pdf	
	http://nationalgeographic.org/activity/earths-changing- climates/	
I .	http://nationalgeographic.org/encyclopedia/climate- change/	
	http://authoring.concord.org/sequences/47/activities/27 8?show_index=true	